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ABSTRACT

Defects in the core as a solution to n-person superadditive characteristic

function games are examined and the process of achieving a "reasonable" core

by changing the value of the grand coalition is studied. A new unique solution

concept, the Ohomocore,H is proposed based on the 4homomollifier" notion

interpreted as the result of implicit bargaining and weighted averages of

coalitional worth. Thereby unreasonable cores are excluded but a core-like

dominance property on the average is maintained. It also yields a measure of

Z-16perational efficiency where the game may be interpreted as an economic

situation of decreasing marginal productivity.
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HOMOCORES, CORES AND OPERATIONAL INEFFICIENCY IN SUPERADDITIVE
Io -

N-PERSON GAMES

by

A. Charnes and B. Golany

*- 1. Introduction

The core, as a solution concept for an n-person characteristic function

game is often criticized for three major deficiencies. It can be empty, thus

leaving us with no solution. It may consist of an infinite number of

imputations, each having equal a priori claim to be the final agreement among

the players. It can also include only one imputation, but one which is not

plausible in reality. (See the BL2 game in Charnes, Littlechild and

Sorensen [1973]). Other important criticisms and suggestions of directions

for modifications were made in L. Johanssen's working papers at The Econometric

Institute of The University of Oslo in 1981 and in Aumann [1981].

Yet we know that with respect to the concept of dominance, the core has

the important advantage of stability. In order to move toward such stability,

Charnes and Kortanek [1967] showed that any empty core game can be turned

into one with a core by changing at most one value of the characteristic

function, (e.g. the value of the grand coalition v(N)).

However, as we show here, it is not always possible to find an amount

which, added to the v(N) of an empty core game, yields a single member core.

On the other hand, the "homocore", shortly to be defined, which is based on

a minimal increase in v(N) (and for which one needs to consider only one

level of the coalitional inequalities which define the core) always exists

and is unique.

Besides dominance stability, other properties of solutions are also

important. Thus Charnes/Rousseau/Seiford [1977] developed the notion of an



2

incremental propensity to disrupt, and the "homomollifier" as a conclusion

to an implicit process of bargaining. By definition, the characteristic

function (designated "coalitional worth" by Aumann [1981]) gives the value

which a coalition can achieve regardless of the actions taken by the other

players. It does not directly measure "anti-coalitional strength", namely--

the power to block formation of other coalitions by preempting members. To

*bring this strength into consideration in characteristic function form, we

use the homomollifier process as a "mapping" of anti-coalitional strength

into changes of coalitional worth value.

The homomollifier of any really essential superadditive game is essential

with empty core. (By "really" we mean some (n-l)-person subgame is essential.)

Thus, by converting the original game into its homomollifier, we bring all

really essential games (with core, without, or with a unique core) to the

same starting point. Then we raise the value of v(N) until all the

cardinality levels of the coalitional inequalities which define the core are

satisfied. Then we obtain a unique imputation, based on the average value for

each player over all the coalitions in which he participates at the level

which yields a core, which is projected downward to sum to the original v(N).

->3 This imputation we call the "homocore." For not really essential games, the

homomollifier is inessential and we take as the homocore its unique imputation

(which is the core).

An interesting yield of this new concept is brought out in relating

game-like situations to economic situations of decreasing marginal productivity

in the second part of this paper. Employing this analogy we show that this

concept gives a reasonable measure of the relative "operational efficiency"

of different production units.

But one needs also to consider whether or not a solution notion corresponds

to what people might select in practice. Thus Heaney [1978] reviewed attempts

............l~m mm wmm= , ,=.,.--.,. . . ........
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to find an acceptable solution concept for real large project situations which

required allocation of costs to participants. Allocations in the core were

indeed attractive to these real participants. Selton/Schuster [1968] also

studied psychological criteria and effects. But in an intensive experimental

comparison of core, Shapley value, nucleolus and other notions, Michener,

Macheel, Depies and Bowen [1983] showed that use of the homomollifier to

reshape the characteristic function gave easily the best correspondence

to human choices. We show here that the homocore does substantially better

than the best of these on this experimental data.

2. Unique Core Imputations

Let (N,v) be a characteristic function game where N = {1,2,...,n} is the

set of players and v is a non-negative function defined on all subsets of N

with v(0) = 0. Let x be a payoff vector with elements xi , i = 1,2,...,n,

and let S be any subset of N with ISI as the cardinality of the set S.

Theorem 2.1: Any inessential game has a unique imputation in the core:

x(i) = v(i) , ViEN.

Proof: An inessential game is defined by Z v(i) = v(N). According to the
iEN

definition of the core, x should satisfy:

x(S) > v(S) VSCN and Z xi = v(N).

iEN

Thus x(i) > v(i), ViEN. Supose that for a certain jEN , x(j) > v(j). Then

E x(i) > E v(i) = v(N). This cannot happen since Z x(i) v(N). Hence
iCN iEN iEN

the only possible imputation is x(i) = v(i), ViEN.

Q.E.D.

4 We define the homocore as this unique imputation wherever the homomollifier

is inessential, i.e., iff all (n-1)-person subgames of the original game are

inessential (see [13]).

It
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Theorem 2.2: A superadditive essential game has a unique imputation in the

cr f (1) v(N) -1 v(S) =maxf,- v(S)

(2) V(S) < fl! I [ Es vN-i1 (n-l-ISI)FvfN-iJ]

VISI n-1

Proof: Here we need to construct the system of inequalities which define the

core. Notice that:

(i) The system consists of n levels: x(S) > v(S), 1SJ 1,2,... ,n.

(ii) The number of inequalities in the kt level is()

(iii) The number of times each x1 (i=1,2,. . .,n) appears in all the

inequalities of the kt level is

The conditions for x to be in the core are:

.2 2 1st level

x ~v
n n

x +xv

2nd level

xn~ +~ X >v )
n1 n .n-i,n

x+ +.....+~x v
12n-2 .1,2,3,.. .,n-2

*n-2 th level

x 3+x 4+... ... +x n-i + n >,v3,4,..,

1 2Xn-1 1,2,3 ,..,n-1

+Xn4~n- Xn v2 .. n ith level
x+X .. + x =v()nh

X 1+X 2 Xn (N level.



5

I. Summing the n inequalities in the (n-l)th level (in which each xi appears

*n-1 times) we get:

(n-I) x(N) > , v(S). Now substituting x(N) = v(N) from the
ISI=n-1

nth level we have:

2__ >, v(S)v()~ n-i ISI=n-1

II. Doing the same for the n-2th level gives: v(N) > 2 2 v(S)

III. Doing the same for the kth level gives: v(N) > 1 v(S)
n-1D ISI=k(k-1

To satisfy the new set of inequalities (III above), it is sufficient

to satisfy the single inequality, v(N) > max nv(S). By
ISI<n (n- 1)I(~nISl-1 )Isl

condition (1) this occurs for ISI=n-1. Before we reduce the original system

of 2n-1 inequalities to the subset in which ISI=n-1 plus the last equation

(a total of n+1 inequalities), we have to make sure that no exceptional

inequality in the levels ISI < n-1 will cause a contradiction. Therefore we

reouire condition (2) to hold for all ISI<n-1. Since our imputation in the

core is to be xi = v(N) - v{N-i} we must have:

n

v(S) < [v(N) - v+N i] jSjv(N) v{N-i} = "v N-i} E- v{N-i}
iES iES n-1 i= icS

=[IS, - ]1  I i S1 ~j v{N-i jj~ ISI Ev{Ni} -(n-l-ISI) Ev{N-i1]

1+i_ 4SnT f f E



Thus condition (2) guarantees that all the constraints in [1] for 1I < n-i

are redundant to the question of determining the core. Now we are left with

precisely n+l inequalities:

1X + n-1 1,2,... ,n-1

1+n-2 +Xn V,2,...,n-2,n

(2) x. x+x3+.. .+x>v2, ... n v2,3,...,n

+. 1+x+" .( = wr1 n v(S)
ISI=n-1

Now suppose for a solution (x1 ,...,xn) that in one of the inequalities

above the left side is strictly greater than the right. Then, adding the

first n inequalities we get the contradiction G-2 x(N) > 2 v(S), since
ISI=n-1

x(N) v(N) v(S). Hence, what we really have are n+l equations." x(N = vN) =n_-1-ISI=n_ 1

Subtracting each of the first n from the last one, we get uniquely

xn = v(N) - V1 2,..

Xn- 1  = v(N) - v, 2 , ,n-2,n

(3)

1= v(N) - v2 ,3 ,..., n

the imputation we employed in condition (2).
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Each of the elements on the right side is non-negative due to superadditivity.

Also, by superadditivity, xi > v(i). Thus we have a unique, feasible solution. I

Q.E.D.

2.1 3-Person Empty Core Games

It is not difficult to show that any superadditive 3-person, empty core

game can be represented in 0-1 normalized form as follows:

N = {1,2,3}

v(O) = v(i) = 0 , i=1,2,3

v(12) = a, v(13) = b, v(23) = c, where a,b,c E[0,l , a+b+c > 2.

v(N) = 1

Lemma 1: For any (N,v) game as defined above, the maximum over k < n in

condition (1) of Theorem 2.2 occurs for k = 2.

Proof: v is a real, non-negative function and

3
.i v(S) o' = v{i1.
n-11s= 2  i=1

Q.E.D.

Lemma 2: For any (N,v) game as defined above, condition (2) of Theorem 2.2

always holds.

Proof: Since n = 3, the only sub-coalition level we need to check is

,Sf=1 < n-i. For this level we substitute in condition (2):

S-: lOur homoco,. ".u in under these hypotheses on v'(N) will be:

' x(i) = [v'(Ni - v(N-i)] v ' i=1,2, ...n ,

" where v'(N) = 1 i - v(S). It is the solution to system (3) projected by

v(N)/v'(N) to satisfy x(N) = v(N).
a
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33+ -a+ ' S={b }"

Iii~iii! Without loss of generality, we check S = {i}. Employing the empty core

~a+b-c

property a+b+c > 2 we have: a+b+c > 2 => a+b-c > 2 - 2c --> 2 > 1 - c.

" " But 1 - c >i 0 because cE[0,1], so we have a+b-c > 0. By changing the names
2

" a, b, c, we also have checked S = {2} and S = {3}.

>-. Q.E.D.
Hence we know that by "raising" v(N) to equal a+b+cS

2 we saif =h 2is

22

[Wpart of condition (1) in Theorem 2.2. Since condition (2) always holds we have

a unique solution based on Theorem 2.2:

•=. a+b-c : a+c-b x3 b+c-a

.i' This is an imputation for the new v(N) since a+b+c > 2. Next, to get an

qll" imputation from this, valid for the old v(N), we have to "reduce" x(N). This

*"- is done by multiplying each above x. by 2' a+b+c

"0 Thereby, we have for any (N,v) game as defined above, the unique solution:

* ..°•- 2c 1- 2b 1- 2aHence we know th t by " a i a+b+-c a+b+c we : I first

,° 2

par of co d t o (1) in T.h.or.m 2.2 . .... .. co d t o (2 al a s h ld.eh v

a unqu souto bae on Thoe 2...2:=m.=n..lui
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Going back to the n > 3 situation, if n-1 v(S) < max 1 - v(S)
SISI=n-1 Is<n (ISI- 1) IsI

then in general there is no minimal value of v(N) which yields a single member

core. For, if the maximum occurs at the kth level, then in the last stage of

the previous proof we would have () equations in n unknowns. For 1 < k < n-i,k

() > n, which yields a rectangular matrix. This will have a solution only if

the additional conditions (preventing contradiction at the n-kth level of the

original set, and yielding (n) -n equations to linear independent of the

other n equations) are satisfied--which is not true for the general case.

Theorem 2.3: The homomollifier of a superadditive really essential game has an

empty core.

Proof: The homomollifier is a really essential superadditive constant sum game.

(See [13] and [4] Theorem 3.7.) Consider the system which defines the core in

the form:

•.x(S 1 w(SI

x(N-S 1) w(N-S1)

x(N) = w(N)

........ ..... *
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If for any SI, x(SI) > W(S1), we have a contradiction when we add since

x(SI) + x(N-S I) > w(SI) + w(N-S I) w(N)

i.e. x(N) > w(N).

Thus we have only x(S) = w(S) , VSC N. But this yields an inessential game,

a contradiction. Therefore, in an essential game, the condition above cannot

hold and we have an empty core.
Q.E.D.

Since we have decided to use the homomollifier as a representative of

an implicit bargaining process, we shall always have an empty core game to

start with. For this kind of game, although we know ([2] proposition 6)

that by raising v(N) we can have a non-empty core game, the core will not

necessarily be a unique imputation (Corollary 2.1). To achieve uniqueness

while coming close to (or equaling) the downward projection of a core solution,

we propose the following "homocore" solution.

3. The Homocore Solution

The homocore is defined by:

-1x(i) n-l[ 'w(S) k-k-i -w(S)l w(N),S) W , i) 1,2,...,n

.n~kIS=k n-i ISJk I w(S)

iES IS5=k

where w is the homomollifier of the original game v, and k satisfies:

max - I__i ' w(S) n w (S)
i- ISI<n (IS IS k [ S :
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Here we first changed w(N) to equal max 1 Ew(S). Then instead of
ISIn (II1 SI

system (2) of Theorem 2.2 we have:

k -i +..n + > w
X1+X2 +' ' "  +X k > W 1,2 ,.,k-l,k

X1+X2 +... +Xk-1  +Xk+ 1  1l,2,...,k-1,k+1

Xl+X 2+... +Xk IX" +x w1 2 k-1 n 192,. .. ,k-l,n

SX 2+  Xk-2+kXk+1 1,2,...,k-2,k,k+l1w
FrteseX2+' " a xk-2Xk xk2 nTer ,2,...,k-2,k,k2

yield the follreaong sxlet of n equtons: .,al h nqulte reatal

n1 x + (n-) x(N-i) E w(S) i=l,...,n
-2 ISIk

i ES

n-2
"- Thus

n- i) + (n-) x(N) = w(S)

and

(-) x(i) + n-1 S w(S) = S w(S) (substitute x(N) from the

iES last equation)

1
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' n-2 k-1. , ('wS)
Q-1) x(i) = w(S) -1~ wISI=k ISI=k

iES
so that

,: .Multiplying this result by ] w(S) to project our imputation down

in value to sum to the original w(N), we get:

F s:w(s) 1

1 - =
x~i FW(S) n ()

n-2 I lsi=k n- Ik

Q-1) LS k

(n-l) ~ wS n

k-) _ k-I

liliTheorem 3.1: The homocore solution satisfies:

ISI=k

i roof: (1) x t(N) v (N) k-

ISI=k w(S

[oo)) (k) 
]w(N) iSS k

. ~~n2 -n(-k -l k (S

(n-)(n-k) "w(S) -

01n 1S=

..~ ~ ~ ~ ~ E x(k:-1): )i( -
,.''.~(-k " E "= ( -k(SSW)) "

L Srk-

Thoe .: Te oooesltinstsis

" l' ' -' ''l ~~( 1 :i :) "v"(N ) - " , , -
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n

~2 sW(S)
i=1 ISI=k

'(N' n-i iES n(k-1) -

-w1  n-k ~ ()n-k

ISI~k

I I S IL-j

,"-.- F, w(s)
W()n-1 iJS n(k-1) wN n1k nk1

= w(N) = v(N)

(2) From the construction of x , we have a set of n equations

in n unknowns with only one unknown in each equation.

Q.E.D.

Theorem 3.2: In the special case for which k =n-i, the homocore is the

solution obtained in Theorem 2.2.

Proof: For k =n-1 we get:

I-ISI=n-k
x(i) = w(N) IES -=(n-2)- l

sw(S)

, "." w(S)

ISI=n-, n-i l
w(N) where w(N) wN = N

i W(N) wi (N) n-e uSI=n-

, .ED
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n w(S)- 2 w(S)) + 21SIF w(S)- E w(S)1
w(N n1- ISI=nlW =s - ISI=n-1

wn (N) n-

-nW(N-i) + w(N-i) + E w(S)
__ ) {ISI=n-1

W'(N)n-1

*.._ = w Y 1  1  w(S) n-1 w(N-i) = w [w'(N) - w(N-i)-jSl=n-l

Q.E.D.

We next consider some examples.

Examples 3.1

.- 3.1.1, The BL2 game: v(1) = v(2) = v(3) = v(23) = 0 ; v(12) = v(13) = v(123) = 1

The homomollifier is: w(1) = ; w(2) = w(3) = 0 ; w(12) = w(13) = w(123) = 1 ;
3"3

w(23)

The homocore is: xI = 2 [(1+1) - (i+1+--)2 (I+1+L) - (k=2)
.. 1 I 1 x(N=I21

x2 3 x - (I+I+)] 1 = 13 3 1"1

This result actually reflects a situation in which players 2,3 join

• !to block player 1 from getting everything (as given by the

original core). Therefore, the homomollifier evidently represented an implicit

*= process in which players 2,3 created a union which had the same bargaining

* power of player 1, thus causing a fair division of the total v(N).

3.1.2, An empty core game: v(1) = v(2) = v(3) 0 ; v(12) = v(123) = 1

v(13) = 5/6 ; v(23) = 4/6. The homomollifier is:w(1)= 2S w(2)- 1

w(3) =0; w(12) w(123) 1; w(13) T9; w(23) 1M
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The homocore is: k= 2 ; w(S) 51 n-1 = 2 ;n-1
I

ISI=2 17 -- n1 7

x(1) 19 x() 17 x(3) 15=51 ; ()=51 ; =51 ;xN ()

Note that in Examples 3.1 our games satisfied the condition
1

1 n v(S) =max (In F),Sv(S). The next example shows a more complex
n-i ISI=n-1 Il<n kI- JSI

situation.

Example 3.2

An empty core, superadditive and essential 5-person game:

v(i) = 0 , Vi=12...,5

v(ij) = 0 , Vij=1,2,...,5 , i~j

v(12j) = 3.5 , Vj=3,4,5

v(34j) = 3 , Vj=1,2,5

v(135) = v(145) = v(235) = v(245) = 4

v(ijkl) = 4.5 , Vi,j,k,l=1,2,...,5 , i~j#kl

v(12345) = 5

Here max T-- v(S) 5.91666. The homomollifier is:'•.ISl<n(Isl-1 Isl IsI=3

w(i) = 0.1 , Vi=1,2,...,5

w(12) w(15) = w(25) = 0.8

w(13) = w(14) = w(23) = w(24) = 0.4

w(34) = w(35) = w(45) = 0.6

w(12j) = 4.4 , Vj=3,4,5

w(34j) = 4.2 , Vj=1,2,5

w(135) = w(145) = w(235) = w(245) = 4.6

w(ijkl) = 4.9 , Vi,j,k,l=1,2,...,5 , ifjfkfl

w(12345) =5
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Again max -1 E )n1 2,
-Ag in ma sw(S. = 7.366. Therefore k = 3 n-I In (sl-1 )Isl IsJ=3

k-1
n-i- = and so:

xi = 1.018 , x2 = 1.018 , x3 = 0.9276 , x4 = 0.9276 , 5 = 1.1086 , x(N) = 5

The example above has no minimal value which added to w(N) yields a

unique solution.

Theorem 3.3: For any essential superadditive empty core game w, the solution

to the following extremal problem gives the minimal value w'(N)

for which the game has a non-empty core:

min x(N)

s.t. x(S) >, g(S) , V ISI < n

Proof: The dual to the problem above is: min wTG

s.t. wTy eT

w T >0

where G= {g(1),g(2),...,g(n),g(12),...,

and Y is a matrix of entries 1,0, whose 1 entries in each row correspond to

the elements of S. It is clear that the dual is consistent (take

" w=U T ,I,...,I,0,0,...,01 and remember that Y has the identity matrix Inxn

n (2n-2)-n

as its first n rows). It is also clear that the primal is consistent since

* there is no upper bound on x(N). Hence, by the linear programming duality states
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theorem, both have the same optimal solution value: x*(N) = w*TG. Now if we

substitute g'(N) = x*(N) we have a new game G' = g(S), ISIn in which the

conditions for the existence of the core hold.

Q.E.D.

Example 3.3

Consider the game in 3.2. As shown before max n v(S) 5.91666.
~(I

This creates a 11-row 5-column matrix which is not consistent. Using the

simplex method (applied on the formulation in Theorem 3.2) gives a minimal

'-value v'(N) =6.1666 (for which xI  = 1.3 x= .33 x 183
1 2 1.333; x3 = x4  50.8333; x 1.8333

is an imputation). This is the minimum which guarantees a non-empty core.

Applying the same method to the homomollifier of the game gives w'(N) = 7.4666

with a projected imputation: x1 =x 2 = 1.026 ; x3 = x4  0.893 ; x5  1.16

(x(N) = 5). This solution is rather close to our homocore solution found in

Ex. 3.2. but the problem with it is that it is not necessarily a unique one.

However, we shall later employ w'(N) = 7.466 in our efficiency measure.

4. A Measure of Operational Inefficiency

Consider a superadditive characteristic function game as describing a

situation in which we have a pool of workers to perform some production

project. There are n workers in the pool, each with various skills and

experience. Their efforts in coalitions are compensated in amounts as

given by the characteristic function. Different groups (coalitions) of

*| workers can achieve different norms of production, and assuming correspondence

between the produced quantities and payments, we assume the higher values of

v(S) are for higher production. As we know, in reality there are no perfect

4 production situations. We propose to describe operational efficiency in

this analogy in terms of the incremental value added to the value of the

grand coalition which will achieve a non-empty core.
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We define EN v , our measure of operational efficiency by

" ': E N ~ v  A I (w ' N ) - w N ) = (, N )
Nvw' (N) IN

Let us consider some examples.

Example 4.1:

The BL2 game has v(1) = v(2) = v(3) = v(23) = 0 , v(12) v(13) = v(123) = 1.

The homomollifier gives w(N) = 1 , w'(N) = 4/3 hence:

1 -

EN,v = 75

This corresponds to the fact that in the BL2 situation there is a

redundancy of one little man. His marginal contribution, when he joins a

team of the big man and the other little man, is zero!

Example 4.2:

Modify the BL2 game to v(1) = v(2) = v(3) = v(23) = 0, v(12) = v(13) = 1

v(123) = 2.

This is clearly a more efficient situation since the output of the total team

is higher. But note that while the relative improvement over that of the

first little man is infinite (v(12)/v(1) = 00), that over the second is a

relative improvement of 1 (v(123)/v(12) = 1. This means that although it is

a better situation, it is not a perfect one. Let us check the value of EN,v

for this game:

Here w(1) = 2/3 , w(2) w(3) = 1/3 , w(12) = w(13) = 5/3, w(23) 6/3 ,

w(123) = 2 , w'(123) = 7/3, so E3,v =2 = 6/7 = 0.857.

As expected, the efficiency measure here is higher than in the BL2 game.-g
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Example 4.3:

v(S) = 1 , VLSI 8,9,10 ; v(S) = 0o, Vls 0,1,...,7

It is obvious that we have a redundancy of two workers in this situation.

Using the same method we get:

w(10) = 1 , w'(10) = 10/8 ; EiOv -1/= 0.8

Here we see a new aspect of the efficiency measure. It can help in

comparing situations with different numbers of workers. As will be shown

in the next example, the number of redundant workers is an indicator of the

level of inefficiency.

Example 4.4

v(S) = 1 , VISI 6,7,8,9,10 ; v(S) 0 VISI = 0,1,...,5

- Here we have four redundant workers compared to only two in the previous

example. Here w(10) = 1 , w'(10) = 10/6, hence E10, 10/6 0.6.

Changes in efficiency may be anticipated only when the outputs (v(N),v(S)),

or the inputs (number of workers for the same mission), are changed. In the

next example we reduce the number of workers for the same task as in Example 4.4.

Example 4.5

v(S) = 1 , ISI = 9,8,7,6 ; v(S) = 0 , VISI = 0,1,...,5
_1

Here w(N) = 1 ; w'(N) = 1.5 EN,v 1= 0.66. Thus, the reduction gives

an improvement in the efficiency measure.

Theorem 4.1: For any superadditive and essential game v, the measure of

operational efficiency satisfies 0.5 < ENv < 1.

Proof: We choose w'(N) - n1 sw(S) (see definition in section 3).

(k- )i Sik
The constant sum property gives w(N) = w(S) + w(N-S) , VS C N
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Consider first EN, v < 1. For all S, w(N) = w(S) + w(N-S). In particular

for S = k

.1 w(N) E 1w(S) + E w(N-S)

So,

(n- 
- s_- s

" w(N) k w(N) w,(N) + 1 w(N-S) < 2w'(N)k n-1(n-1
k-i1(- ~~

There is only one case in which the above inequality can be an equality and this

occurs when k Then we have - w(N) < 2w'(N), implying EN 1. In all

other cases we have w'(N) > 1 w(N-S). It is unnecessary to checkn-1

k-1) ISI=k

k <- since -nw(N) > 2w(N) , while the other side is less than 2w'(N). So

it is clear that ENv < 1. On the other hand when k > w(N) < 2w(N).

It is enough to check the extreme k = n-i.

n

w(N) WI(N)+ w(i) < w'(N) + w(N) (because the game is

i=1 essential)

Thus w(N) < w'(N) or EN, v < i.

Next consider EN,v > 0.5. It is sufficient to consider w'(N) n 1 1 w(S).
(k-1 ISJ=k

It is clear that k (because of superadditivity Xw(S) < X w(N-S)
2sj=z Sl=n-Z

n

since in both we have the same number of elements in the sum). Next we know

(again because of superadditivity) that X w(S) <(n) w(N).
S~k

j jj



Thus, 21

W'(N) 1w(S) < k w(N) nw(N)w'() n-1) 151=kI  n-1l k

Hence,

w(N) : E > nk But the least value for k is-! and then EN, v

i7'TRT N,v n an2hnNv>05

Q.E.D.

5. A Test of Homocore Predictions

A rare opportunity to experientially test the homocore as a predictor of

human divisional agreements was afforded by the data collected at the University

of Wisconsin by Michener et al [1982]. (This follows several important

evaluative papers, [8, 9, 10, 11].) Six different 5-person characteristic

function games were repeatedly "solved" by 180 students acting as players.

. (The games are defined in Table 3 of their paper.) The actual imputations

* reached were compared to the predictions of various solution concepts (the

Shapley value, the Nucleolus, the 2-Center, the Disruption value) each applied

to a set of modifications of the characteristic function. A discrepenacy

measure was defined as follows:

n 1/2

d (xi - pi) 2  , where x. is the actual payoff to player i
i14

i" and pi is the predicted payoff. Michener et al concluded from the discrepancies

presented in their Table 6 that the homomollifier (of Charnes, Rousseau and

*| Seiford [4)) was superior to the other modifications of the characteristic

- function in describing the "worth" of each coalition. This independently

* supports our idea of calculating the homocore from the homomollifier and not

*| directly from the characteristic function.

Applying the homocore as a predictor and comparing it with the other

". predictions by the addition of one line to Table 6 of [7], we obtain the

4 following results:
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Mean Discrepancy Scores as a Function of Representation and Solution Concept

Solution Characteristic Counter Equal
Concept Function Homomollifier Mollifier Homomollifier Complement

v(S) k(S) e(S) h(S) V(S)

Shapley value 17.25 19.90 17.25 15.92 17.25

Nucleolus 24.76 20.42 16.11 15.81 16.09

2-Center 19.71 21.94 19.71 17.97 19.71

; DisruptionDisu 16.49 19.74 17.78 16.49 19.74
value

Homocore 11.58

Average over
Solution 19.55 20.50 17.71 16.55* 18.20

*This average does not include the homocore score.

Clearly none of the other predictions come close to the discrepancy score

achieved by the homocore. It is 1.365 times smaller than its closest competitor

(also derived from the homomollifier). This table of results also suggests

that the complicated threat, counter-threat, counter-counter threat, etc.

regressions involved in solution notions such as the bargaining set or the

nucleolus may not be good representations of the factors in real behavior

for reaching divisional agreements. But, both for the latter conclusion

and for the conclusion of superiority of the homocore, much more experimentation

K. is evidently required.

S
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